Intramucosal–arterial PCO2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia

نویسندگان

  • Arnaldo Dubin
  • Gastón Murias
  • Elisa Estenssoro
  • Héctor Canales
  • Julio Badie
  • Mario Pozo
  • Juan P Sottile
  • Marcelo Barán
  • Fernando Pálizas
  • Mercedes Laporte
چکیده

INTRODUCTION An elevation in intramucosal-arterial PCO2 gradient (DeltaPCO2) could be determined either by tissue hypoxia or by reduced blood flow. Our hypothesis was that in hypoxic hypoxia with preserved blood flow, DeltaPCO2 should not be altered. METHODS In 17 anesthetized and mechanically ventilated sheep, oxygen delivery was reduced by decreasing flow (ischemic hypoxia, IH) or arterial oxygen saturation (hypoxic hypoxia, HH), or no intervention was made (sham). In the IH group (n = 6), blood flow was lowered by stepwise hemorrhage; in the HH group (n = 6), hydrochloric acid was instilled intratracheally. We measured cardiac output, superior mesenteric blood flow, gases, hemoglobin, and oxygen saturations in arterial blood, mixed venous blood, and mesenteric venous blood, and ileal intramucosal PCO2 by tonometry. Systemic and intestinal oxygen transport and consumption were calculated, as was DeltaPCO2. After basal measurements, measurements were repeated at 30, 60, and 90 minutes. RESULTS Both progressive bleeding and hydrochloric acid aspiration provoked critical reductions in systemic and intestinal oxygen delivery and consumption. No changes occurred in the sham group. DeltaPCO2 increased in the IH group (12 +/- 10 [mean +/- SD] versus 40 +/- 13 mmHg; P < 0.001), but remained unchanged in HH and in the sham group (13 +/- 6 versus 10 +/- 13 mmHg and 8 +/- 5 versus 9 +/- 6 mmHg; not significant). DISCUSSION In this experimental model of hypoxic hypoxia with preserved blood flow, DeltaPCO2 was not modified during dependence of oxygen uptake on oxygen transport. These results suggest that DeltaPCO2 might be determined primarily by blood flow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of flow on mucosal-to-arterial carbon dioxide difference

Intramucosal-to-arterial carbon dioxide difference (the so-called PCO2 [partial carbon dioxide tension] gap) remains largely unaltered during decreased oxygen delivery, if the latter is reduced as flow is maintained. In this condition (hypoxic hypoxia or anaemic hypoxia), the PCO2 gap fails to mirror intestinal tissue dysoxia. Results from several experiments have demonstrated that blood flow i...

متن کامل

Mechanisms of tissue hypercarbia in sepsis.

Intramucosal acidosis, that it is to say, an increased intramucosal-arterial PCO2 difference, is a common finding in clinical and experimental sepsis. Nevertheless, the physiologic significance of increases in tissue PCO2 is controversial, since CO2 can be generated by both aerobic and anaerobic biochemical processes. PCO2 can rise after buffering of protons produced in the hydrolysis of high-e...

متن کامل

Intramucosal–arterial PCO2 gap does reflect tissue dysoxia – authors' response

The main criticism of Gutierrez and Turkan [1] to our recent paper [2] is the absence of anaerobic metabolism in the hypoxic hypoxia (HH) group as an explanation for lack of increase in intramucosal–arterial PCO 2 gradient (∆PCO 2). Despite their elegant arguments, we still believe that the animals in the IH group were in an anaerobic state. Our statement is supported by the following. Although...

متن کامل

Increased blood flow prevents intramucosal acidosis in sheep endotoxemia: a controlled study

INTRODUCTION Increased intramucosal-arterial carbon dioxide tension (PCO2) difference (DeltaPCO2) is common in experimental endotoxemia. However, its meaning remains controversial because it has been ascribed to hypoperfusion of intestinal villi or to cytopathic hypoxia. Our hypothesis was that increased blood flow could prevent the increase in DeltaPCO2. METHODS In 19 anesthetized and mechan...

متن کامل

Assessing the Effectiveness of Gastric Tonometry Guided Therapy

A low intramucosal pH (pHi) and an increase in the difference between gastric mucosal and arterial PCO2 (PCO2 gap) reflect splanchnic hypoperfusion and are good indicators of poor prognosis. Previously, some randomised controlled trials (RCTs) were performed based on the theory that normalising the low pHi or PCO2 gap could improve the outcomes of critical care patients. However, these RCTs yie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Critical Care

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2002